On the Complexity of Extended and Proportional Justified Representation

Author:

Aziz Haris,Elkind Edith,Huang Shenwei,Lackner Martin,Sanchez-Fernandez Luis,Skowron Piotr

Abstract

We consider the problem of selecting a fixed-size committee based on approval ballots. It is desirable to have a committee in which all voters are fairly represented. Aziz et al. (2015a; 2017) proposed an axiom called extended justified representation (EJR), which aims to capture this intuition; subsequently, Sanchez-Fernandez et al. (2017) proposed a weaker variant of this axiom called proportional justified representation (PJR). It was shown that it is coNP-complete to check whether a given committee provides EJR, and it was conjectured that it is hard to find a committee that provides EJR. In contrast, there are polynomial-time computable voting rules that output committees providing PJR, but the complexity of checking whether a given committee provides PJR was an open problem. In this paper, we answer open questions from prior work by showing that EJR and PJR have the same worst-case complexity: we provide two polynomial-time algorithms that output committees providing EJR, yet we show that it is coNP-complete to decide whether a given committee provides PJR. We complement the latter result by fixed-parameter tractability results.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Adaptive and Verifiably Proportional Method for Participatory Budgeting;Web and Internet Economics;2023-12-31

2. Proportional representation in matching markets: selecting multiple matchings under dichotomous preferences;Social Choice and Welfare;2023-04-05

3. Phragmén’s voting methods and justified representation;Mathematical Programming;2023-03-06

4. Outlook and Research Directions;SpringerBriefs in Intelligent Systems;2022-11-18

5. Algorithms and Computational Complexity;SpringerBriefs in Intelligent Systems;2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3