Variational BOLT: Approximate Learning in Factorial Hidden Markov Models With Application to Energy Disaggregation
-
Published:2018-04-25
Issue:1
Volume:32
Page:
-
ISSN:2374-3468
-
Container-title:Proceedings of the AAAI Conference on Artificial Intelligence
-
language:
-
Short-container-title:AAAI
Author:
Lange Henning,Berges Mario
Abstract
The learning problem for Factorial Hidden Markov Models with discrete and multi-variate latent variables remains a challenge. Inference of the latent variables required for the E-step of Expectation Minimization algorithms is usually computationally intractable. In this paper we propose a variational learning algorithm mimicking the Baum-Welch algorithm. By approximating the filtering distribution with a variational distribution parameterized by a recurrent neural network, the computational complexity of the learning problem as a function of the number of hidden states can be reduced to quasilinear instead of quadratic time as required by traditional algorithms such as Baum-Welch whilst making minimal independence assumptions. We evaluate the performance of the resulting algorithm, which we call Variational BOLT, in the context of unsupervised end-to-end energy disaggregation. We conduct experiments on the publicly available REDD dataset and show competitive results when compared with a supervised inference approach and state-of-the-art results in an unsupervised setting.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献