Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis

Author:

Liu Ye,He Lifang,Cao Bokai,Yu Philip,Ragin Ann,Leow Alex

Abstract

Network analysis of human brain connectivity is critically important for understanding brain function and disease states. Embedding a brain network as a whole graph instance into a meaningful low-dimensional representation can be used to investigate disease mechanisms and inform therapeutic interventions. Moreover, by exploiting information from multiple neuroimaging modalities or views, we are able to obtain an embedding that is more useful than the embedding learned from an individual view. Therefore, multi-view multi-graph embedding becomes a crucial task. Currently only a few studies have been devoted to this topic, and most of them focus on vector-based strategy which will cause structural information contained in the original graphs lost. As a novel attempt to tackle this problem, we propose Multi-view Multi-graph Embedding M2E by stacking multi-graphs into multiple partially-symmetric tensors and using tensor techniques to simultaneously leverage the dependencies and correlations among multi-view and multi-graph brain networks. Extensive experiments on real HIV and bipolar disorder brain network datasets demonstrate the superior performance of M2E on clustering brain networks by leveraging the multi-view multi-graph interactions.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contrastive pre-training of Soft-Clustering GCN for diagnosing Alzheimer’s disease;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Classification of Alzheimer’s Disease via Spatial-Temporal Graph Convolutional Networks;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

3. Exclusivity and consistency induced NMF for multi-view representation learning;Knowledge-Based Systems;2023-12

4. Graph-based Alignment and Uniformity for Recommendation;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

5. A novel autism spectrum disorder identification method: spectral graph network with brain-population graph structure joint learning;International Journal of Machine Learning and Cybernetics;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3