Author:
Atarashi Kyohei,Oyama Satoshi,Kurihara Masahito
Abstract
Although supervised learning requires a labeled dataset, obtaining labels from experts is generally expensive. For this reason, crowdsourcing services are attracting attention in the field of machine learning as a way to collect labels at relatively low cost. However, the labels obtained by crowdsourcing, i.e., from non-expert workers, are often noisy. A number of methods have thus been devised for inferring true labels, and several methods have been proposed for learning classifiers directly from crowdsourced labels, referred to as "learning from crowds." A more practical problem is learning from crowdsourced labeled data and unlabeled data, i.e., "semi-supervised learning from crowds." This paper presents a novel generative model of the labeling process in crowdsourcing. It leverages unlabeled data effectively by introducing latent features and a data distribution. Because the data distribution can be complicated, we use a deep neural network for the data distribution. Therefore, our model can be regarded as a kind of deep generative model. The problems caused by the intractability of latent variable posteriors is solved by introducing an inference model. The experiments show that it outperforms four existing models, including a baseline model, on the MNIST dataset with simulated workers and the Rotten Tomatoes movie review dataset with Amazon Mechanical Turk workers.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hierarchical Crowdsourcing for Data Labeling with Heterogeneous Crowd;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04
2. Learning from Noisy Crowd Labels with Logics;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04
3. Attribute augmentation-based label integration for crowdsourcing;Frontiers of Computer Science;2022-12-24
4. A Crowdsourcing Truth Inference Algorithm Based on Hypergraph Neural Networks;2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2022-09-12
5. Learning from crowds with sparse and imbalanced annotations;Machine Learning;2022-06-14