Deep Reinforcement Learning for Unsupervised Video Summarization With Diversity-Representativeness Reward

Author:

Zhou Kaiyang,Qiao Yu,Xiang Tao

Abstract

Video summarization aims to facilitate large-scale video browsing by producing short, concise summaries that are diverse and representative of original videos. In this paper, we formulate video summarization as a sequential decision-making process and develop a deep summarization network (DSN) to summarize videos. DSN predicts for each video frame a probability, which indicates how likely a frame is selected, and then takes actions based on the probability distributions to select frames, forming video summaries. To train our DSN, we propose an end-to-end, reinforcement learning-based framework, where we design a novel reward function that jointly accounts for diversity and representativeness of generated summaries and does not rely on labels or user interactions at all. During training, the reward function judges how diverse and representative the generated summaries are, while DSN strives for earning higher rewards by learning to produce more diverse and more representative summaries. Since labels are not required, our method can be fully unsupervised. Extensive experiments on two benchmark datasets show that our unsupervised method not only outperforms other state-of-the-art unsupervised methods, but also is comparable to or even superior than most of published supervised approaches.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3