Unsupervised Domain Adaptation With Distribution Matching Machines

Author:

Cao Yue,Long Mingsheng,Wang Jianmin

Abstract

Domain adaptation generalizes a learning model across source domain and target domain that follow different distributions. Most existing work follows a two-step procedure: first, explores either feature matching or instance reweighting independently, and second, train the transfer classifier separately. In this paper, we show that either feature matching or instance reweighting can only reduce, but not remove, the cross-domain discrepancy, and the knowledge hidden in the relations between the data labels from the source and target domains is important for unsupervised domain adaptation. We propose a new Distribution Matching Machine (DMM) based on the structural risk minimization principle, which learns a transfer support vector machine by extracting invariant feature representations and estimating unbiased instance weights that jointly minimize the cross-domain distribution discrepancy. This leads to a robust transfer learner that performs well against both mismatched features and irrelevant instances. Our theoretical analysis proves that the proposed approach further reduces the generalization error bound of related domain adaptation methods. Comprehensive experiments validate that the DMM approach significantly outperforms competitive methods on standard domain adaptation benchmarks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3