Pairwise Relationship Guided Deep Hashing for Cross-Modal Retrieval

Author:

Yang Erkun,Deng Cheng,Liu Wei,Liu Xianglong,Tao Dacheng,Gao Xinbo

Abstract

With benefits of low storage cost and fast query speed, cross-modal hashing has received considerable attention recently. However, almost all existing methods on cross-modal hashing cannot obtain powerful hash codes due to directly utilizing hand-crafted features or ignoring heterogeneous correlations across different modalities, which will greatly degrade the retrieval performance. In this paper, we propose a novel deep cross-modal hashing method to generate compact hash codes through an end-to-end deep learning architecture, which can effectively capture the intrinsic relationships between various modalities. Our architecture integrates different types of pairwise constraints to encourage the similarities of the hash codes from an intra-modal view and an inter-modal view, respectively. Moreover, additional decorrelation constraints are introduced to this architecture, thus enhancing the discriminative ability of each hash bit. Extensive experiments show that our proposed method yields state-of-the-art results on two cross-modal retrieval datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating data imbalance and noise: A divergence-based approach with enhanced sample selection;Neurocomputing;2024-11

2. Deep cross-modal hashing with multi-task latent space learning;Engineering Applications of Artificial Intelligence;2024-10

3. Individual mapping and asymmetric dual supervision for discrete cross-modal hashing;Expert Systems with Applications;2024-08

4. Dual-Pathway Deep Hashing-Based Adversarial Learning for Cross-Modal Retrieval;International Journal of Pattern Recognition and Artificial Intelligence;2024-06-29

5. Deep supervised fused similarity hashing for cross-modal retrieval;Multimedia Tools and Applications;2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3