Author:
Wang Shuyang,Ding Zhengming,Fu Yun
Abstract
Recently the auto-encoder and its variants have demonstrated their promising results in extracting effective features. Specifically, its basic idea of encouraging the output to be as similar as input, ensures the learned representation could faithfully reconstruct the input data. However, one problem arises that not all hidden units are useful to compress the discriminative information while lots of units mainly contribute to represent the task-irrelevant patterns. In this paper, we propose a novel algorithm, Feature Selection Guided Auto-Encoder, which is a unified generative model that integrates feature selection and auto-encoder together. To this end, our proposed algorithm can distinguish the task-relevant units from the task-irrelevant ones to obtain most effective features for future classification tasks. Our model not only performs feature selection on learned high-level features, but also dynamically endows the auto-encoder to produce more discriminative units. Experiments on several benchmarks demonstrate our method's superiority over state-of-the-art approaches.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献