Between Subgraph Isomorphism and Maximum Common Subgraph

Author:

Hoffmann Ruth,McCreesh Ciaran,Reilly Craig

Abstract

When a small pattern graph does not occur inside a larger target graph, we can ask how to find "as much of the pattern as possible" inside the target graph. In general, this is known as the maximum common subgraph problem, which is much more computationally challenging in practice than subgraph isomorphism. We introduce a restricted alternative, where we ask if all but k vertices from the pattern can be found in the target graph. This allows for the development of slightly weakened forms of certain invariants from subgraph isomorphism which are based upon degree and number of paths.  We show that when k is small, weakening the invariants still retains much of their effectiveness. We are then able to solve this problem on the standard problem instances used to benchmark subgraph isomorphism algorithms, despite these instances being too large for current maximum common subgraph algorithms to handle. Finally, by iteratively increasing k, we obtain an algorithm which is also competitive for the maximum common subgraph

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recursive-Parallel Algorithm for Solving the Maximum Common Subgraph Problem;Modeling and Analysis of Information Systems;2023-06-14

2. The Multi-Maximum and Quasi-Maximum Common Subgraph Problem;Computation;2023-03-27

3. An Efficient Alternative to Subgraph Isomorphism and Its Advantages;Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence;2022-12-23

4. A Graph Theoretical Methodology for Network Intrusion Fingerprinting and Attack Attribution;Lecture Notes in Networks and Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3