Market Pricing for Data Streams

Author:

Abolhassani Melika,Esfandiari Hossein,Hajiaghayi MohammadTaghi,Lucier Brendan,Yami Hadi

Abstract

Internet-enabled marketplaces such as Amazon deal with huge datasets registering transaction of merchandises between lots of buyers and sellers. It is important that algorithms become more time and space efficient as the size of datasets increase. An algorithm that runs in polynomial time may not have a reasonable running time for such large datasets. Here, we study the development of pricing algorithms that are appropriate for use with massive datasets. We especially focus on the streaming setting, the common model for big data analysis. We present an envy-free mechanism for social welfare maximization problem in the streaming setting using O(k2 l) space, where k is the number of different goods and l is the number of available items of each good. We also provide an α-approximation mechanism for revenue maximization in this setting given an α-approximation mechanism for the corresponding offline problem exists. Moreover, we provide mechanisms to approximate the optimum social welfare (or revenue) within 1 – ε factor, in space independent of l which would be favorable in case l is large compared to k. Finally, we present hardness results showing approximation of optimal prices that maximize social welfare (or revenue) in the streaming setting needs Ω(l) space. We achieve our results by developing a powerful sampling technique for bipartite networks. The simplicity of our sampling technique empowers us to maintain the sample over the input sequence. Indeed, one can construct this sample in the distributed setting (a.k.a, MapReduce) and get the same results in two rounds of computations, or one may simply apply this sampling technique to provide faster offline algorithms.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Three-Layer Data Markets;SSRN Electronic Journal;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3