Deep MIML Network

Author:

Feng Ji,Zhou Zhi-Hua

Abstract

In many real world applications, the concerned objects are with multiple labels, and can be represented as a bag of instances. Multi-instance Multi-label (MIML) learning provides a framework for handling such task and has exhibited excellent performance in various domains. In a MIML setting, the feature representation of instances usually has big impact on the final performance; inspired by the recent deep learning studies, in this paper, we propose the DeepMIML network which exploits deep neural network formation to generate instance representation for MIML. The sub-concept learning component of the DeepMIML structure reserves the instance-label relation discovery ability of MIML algorithms; that is, it can automatically locating the key input patterns that trigger the labels. The effectiveness of DeepMIML network is validated by experiments on various domains of data.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MIST: Multi-instance selective transformer for histopathological subtype prediction;Medical Image Analysis;2024-10

2. Robust Multi-Graph Multi-Label Learning With Dual-Granularity Labeling;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

3. Attribute and Malignancy Analysis of Lung Nodule on Chest CT with Cause-and-Effect Logic;Journal of Medical and Biological Engineering;2024-09-13

4. Exploiting Instance-level Relationships in Weakly Supervised Text-to-Video Retrieval;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-09-12

5. ProtoTree-MIL: Interpretable Multiple Instance Learning for Whole Slide Image Classification;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3