Community Preserving Network Embedding

Author:

Wang Xiao,Cui Peng,Wang Jing,Pei Jian,Zhu Wenwu,Yang Shiqiang

Abstract

Network embedding, aiming to learn the low-dimensional representations of nodes in networks, is of paramount importance in many real applications. One basic requirement of network embedding is to preserve the structure and inherent properties of the networks. While previous network embedding methods primarily preserve the microscopic structure, such as the first- and second-order proximities of nodes, the mesoscopic community structure, which is one of the most prominent feature of networks, is largely ignored. In this paper, we propose a novel Modularized Nonnegative Matrix Factorization (M-NMF) model to incorporate the community structure into network embedding. We exploit the consensus relationship between the representations of nodes and community structure, and then jointly optimize NMF based representation learning model and modularity based community detection model in a unified framework, which enables the learned representations of nodes to preserve both of the microscopic and community structures. We also provide efficient updating rules to infer the parameters of our model, together with the correctness and convergence guarantees. Extensive experimental results on a variety of real-world networks show the superior performance of the proposed method over the state-of-the-arts.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated recommendation model using ordinal probit regression factorization machines;International Journal of Data Science and Analytics;2024-08-14

2. Cross domain recommendation using dual inductive transfer learning;Multimedia Tools and Applications;2024-08-08

3. Node Clustering on Attributed Graph Using Anchor Sampling Strategy and Debiasing Strategy;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

4. Attribute graph clustering via transformer and graph attention autoencoder;Intelligent Data Analysis;2024-08-01

5. Network embedding based on DepDist contraction;Applied Network Science;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3