Privacy-Preserving Human Activity Recognition from Extreme Low Resolution

Author:

Ryoo Michael,Rothrock Brandon,Fleming Charles,Yang Hyun Jong

Abstract

Privacy protection from surreptitious video recordings is an important societal challenge. We desire a computer vision system (e.g., a robot) that can recognize human activities and assist our daily life, yet ensure that it is not recording video that may invade our privacy. This paper presents a fundamental approach to address such contradicting objectives: human activity recognition while only using extreme low-resolution (e.g., 16x12) anonymized videos. We introduce the paradigm of inverse super resolution (ISR), the concept of learning the optimal set of image transformations to generate multiple low-resolution (LR) training videos from a single video. Our ISR learns different types of sub-pixel transformations optimized for the activity classification, allowing the classifier to best take advantage of existing high-resolution videos (e.g., YouTube videos) by creating multiple LR training videos tailored for the problem. We experimentally confirm that the paradigm of inverse super resolution is able to benefit activity recognition from extreme low-resolution videos.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low‐resolution activity recognition using super‐resolution and model ensemble networks;ETRI Journal;2024-07-24

2. RISE : Privacy preserved data analytics using Regularized Inference Specific autoEncoder;Engineering Applications of Artificial Intelligence;2024-07

3. Tinysign: sign language recognition in low resolution settings;Signal, Image and Video Processing;2024-06-28

4. Secrets in Motion: Privacy-Preserving Video Classification with Built-In Access Control;2024 9th International Conference on Smart and Sustainable Technologies (SpliTech);2024-06-25

5. An Outlook into the Future of Egocentric Vision;International Journal of Computer Vision;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3