Author:
Ryoo Michael,Rothrock Brandon,Fleming Charles,Yang Hyun Jong
Abstract
Privacy protection from surreptitious video recordings is an important societal challenge. We desire a computer vision system (e.g., a robot) that can recognize human activities and assist our daily life, yet ensure that it is not recording video that may invade our privacy. This paper presents a fundamental approach to address such contradicting objectives: human activity recognition while only using extreme low-resolution (e.g., 16x12) anonymized videos. We introduce the paradigm of inverse super resolution (ISR), the concept of learning the optimal set of image transformations to generate multiple low-resolution (LR) training videos from a single video. Our ISR learns different types of sub-pixel transformations optimized for the activity classification, allowing the classifier to best take advantage of existing high-resolution videos (e.g., YouTube videos) by creating multiple LR training videos tailored for the problem. We experimentally confirm that the paradigm of inverse super resolution is able to benefit activity recognition from extreme low-resolution videos.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献