Sequential Peer Prediction: Learning to Elicit Effort using Posted Prices

Author:

Liu Yang,Chen Yiling

Abstract

Peer prediction mechanisms are often adopted to elicit truthful contributions from crowd workers when no ground-truth verification is available. Recently, mechanisms of this type have been developed to incentivize effort exertion, in addition to truthful elicitation. In this paper, we study a sequential peer prediction problem where a data requester wants to dynamically determine the reward level to optimize the trade-off between the quality of information elicited from workers and the total expected payment. In this problem, workers have homogeneous expertise and heterogeneous cost for exerting effort, both unknown to the requester. We propose a sequential posted-price mechanism to dynamically learn the optimal reward level from workers' contributions and to incentivize effort exertion and truthful reporting. We show that (1) in our mechanism, workers exerting effort according to a non-degenerate threshold policy and then reporting truthfully is an equilibrium that returns highest utility for every worker, and (2) The regret of our learning mechanism w.r.t. offering the optimal reward (price) is upper bounded by Õ(T{3/4) where T is the learning horizon. We further show the power of our learning approach when the reports of workers do not necessarily follow the game-theoretic equilibrium.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dominantly Truthful Peer Prediction Mechanisms with a Finite Number of Tasks;Journal of the ACM;2023-12-23

2. Information Elicitation from Decentralized Crowd Without Verification;2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt);2023-08-24

3. Truthful Incentive Mechanism for Federated Learning with Crowdsourced Data Labeling;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17

4. An Online Inference-Aided Incentive Framework for Information Elicitation Without Verification;IEEE Journal on Selected Areas in Communications;2023-04

5. On Dynamically Pricing Crowdsourcing Tasks;ACM Transactions on Knowledge Discovery from Data;2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3