Scalable Multitask Policy Gradient Reinforcement Learning

Author:

El Bsat Salam,Bou Ammar Haitham,Taylor Matthew

Abstract

Policy search reinforcement learning (RL) allows agents to learn autonomously with limited feedback. However, such methods typically require extensive experience for successful behavior due to their tabula rasa nature. Multitask RL is an approach, which aims to reduce data requirements by allowing knowledge transfer between tasks. Although successful, current multitask learning methods suffer from scalability issues when considering large number of tasks. The main reasons behind this limitation is the reliance on centralized solutions. This paper proposes to a novel distributed multitask RL framework, improving the scalability across many different types of tasks. Our framework maps multitask RL to an instance of general consensus and develops an efficient decentralized solver. We justify the correctness of the algorithm both theoretically and empirically: we first proof an improvement of convergence speed to an order of O(1/k) with k being the number of iterations, and then show our algorithm surpassing others on multiple dynamical system benchmarks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to System Heterogeneity;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

2. MTMA-DDPG: A Deep Deterministic Policy Gradient Reinforcement Learning for Multi-task Multi-agent Environments;IFIP Advances in Information and Communication Technology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3