Learning Invariant Deep Representation for NIR-VIS Face Recognition

Author:

He Ran,Wu Xiang,Sun Zhenan,Tan Tieniu

Abstract

Visual versus near infrared (VIS-NIR) face recognition is still a challenging heterogeneous task due to large appearance difference between VIS and NIR modalities. This paper presents a deep convolutional network approach that uses only one network to map both NIR and VIS images to a compact Euclidean space. The low-level layers of this network are trained only on large-scale VIS data. Each convolutional layer is implemented by the simplest case of maxout operator. The high-level layer is divided into two orthogonal subspaces that contain modality-invariant identity information and modality-variant spectrum information respectively. Our joint formulation leads to an alternating minimization approach for deep representation at the training time and an efficient computation for heterogeneous data at the testing time. Experimental evaluations show that our method achieves 94% verification rate at FAR=0.1% on the challenging CASIA NIR-VIS 2.0 face recognition dataset. Compared with state-of-the-art methods, it reduces the error rate by 58% only with a compact 64-D representation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3