Author:
Davies Toby,Gange Graeme,Stuckey Peter
Abstract
Logic-based Benders decomposition (LBBD) is a powerful hybrid optimisation technique that can combine the strong dual bounds of mixed integer programming (MIP) with the combinatorial search strengths of constraint programming (CP). A major drawback of LBBD is that it is a far more involved process to implement an LBBD solution to a problem than the "model-and-run" approach provided by both CP and MIP. We propose an automated approach that accepts an arbitrary MiniZinc model and solves it using LBBD with no additional intervention on the part of the modeller. The design of this approach also reveals an interesting duality between LBBD and large neighborhood search (LNS). We compare our implementation of this approach to CP and MIP solvers on 4 different problem classes where LBBD has been applied before.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献