Counting-Based Reliability Estimation for Power-Transmission Grids

Author:

Duenas-Osorio Leonardo,Meel Kuldeep,Paredes Roger,Vardi Moshe

Abstract

Modern society is increasingly reliant on the functionality of infrastructure facilities and utility services. Consequently, there has been surge of interest in the problem of quantification of system reliability, which is known to be #P-complete. Reliability also contributes to the resilience of systems, so as to effectively make them bounce back after contingencies. Despite diverse progress, most techniques to estimate system reliability and resilience remain computationally expensive. In this paper, we investigate how recent advances in hashing-based approaches to counting can be exploited to improve computational techniques for system reliability.The primary contribution of this paper is a novel framework, RelNet, that reduces the problem of computing reliability for a given network to counting the number of satisfying assignments of a Σ11 formula, which is amenable to recent hashing-based techniques developed for counting satisfying assignments of SAT formula. We then apply RelNet to ten real world power-transmission grids across different cities in the U.S. and are able to obtain, to the best of our knowledge, the first theoretically sound a priori estimates of reliability between several pairs of nodes of interest. Such estimates will help managing uncertainty and support rational decision making for community resilience.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian improved cross entropy method with categorical mixture models for network reliability assessment;Reliability Engineering & System Safety;2024-12

2. International Competition on Graph Counting Algorithms 2023;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2024-09-01

3. Formally Certified Approximate Model Counting;Lecture Notes in Computer Science;2024

4. Rounding Meets Approximate Model Counting;Computer Aided Verification;2023

5. Efficient Fairness Testing Through Hash-Based Sampling;Search-Based Software Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3