Deep Correlated Metric Learning for Sketch-based 3D Shape Retrieval

Author:

Dai Guoxian,Xie Jin,Zhu Fan,Fang Yi

Abstract

The explosive growth of 3D models has led to the pressing demand for an efficient searching system. Traditional model-based search is usually not convenient, since people don't always have 3D model available by side. The sketch-based 3D shape retrieval is a promising candidate due to its simpleness and efficiency. The main challenge for sketch-based 3D shape retrieval is the discrepancy across different domains. In the paper, we propose a novel deep correlated metric learning (DCML) method to mitigate the discrepancy between sketch and 3D shape domains. The proposed DCML trains two distinct deep neural networks (one for each domain) jointly with one loss, which learns two deep nonlinear transformations to map features from both domains into a nonlinear feature space. The proposed loss, including discriminative loss and correlation loss, aims to increase the discrimination of features within each domain as well as the correlation between different domains. In the transfered space, the discriminative loss minimizes the intra-class distance of the deep transformed features and maximizes the inter-class distance of the deep transformed features at least a predefined margin within each domain, while the correlation loss focuses on minimizing the distribution discrepancy across different domains. Our proposed method is evaluated on SHREC 2013 and 2014 benchmarks, and the experimental results demonstrate the superiority of our proposed method over the state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. D2GL: Dual-level dual-scale graph learning for sketch-based 3D shape retrieval;Pattern Recognition;2024-12

2. Global semantics correlation transmitting and learning for sketch-based cross-domain visual retrieval;Complex & Intelligent Systems;2024-06-29

3. Fast metric multi-view hashing for multimedia retrieval;Information Fusion;2024-03

4. Sketch-based 3D shape retrieval via teacher–student learning;Computer Vision and Image Understanding;2024-02

5. Domain Adaptive 3D Shape Retrieval from Monocular Images;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3