Healthy Cognitive Aging: A Hybrid Random Vector Functional-Link Model for the Analysis of Alzheimer’s Disease

Author:

Dai Peng,Gwadry-Sridhar Femida,Bauer Michael,Borrie Michael,Teng Xue

Abstract

Alzheimer's disease (AD) is a genetically complex neurodegenerative disease, which leads to irreversible brain damage, severe cognitive problems and ultimately death. A number of clinical trials and study initiatives have been set up to investigate AD pathology, leading to large amounts of high dimensional heterogeneous data (biomarkers) for analysis. This paper focuses on combining clinical features from different modalities, including medical imaging, cerebrospinal fluid (CSF), etc., to diagnose AD and predict potential progression. Due to privacy and legal issues involved with clinical research, the study cohort (number of patients) is relatively small, compared to thousands of available biomarkers (predictors). We propose a hybrid pathological analysis model, which integrates manifold learning and Random Vector functional-link network (RVFL) so as to achieve better ability to extract discriminant information with limited training materials. Furthermore, we model (current and future) cognitive healthiness as a regression problem about age. By comparing the difference between predicted age and actual age, we manage to show statistical differences between different pathological stages. Verification tests are conducted based on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Extensive comparison is made against different machine learning algorithms, i.e. Support Vector Machine (SVM), Random Forest (RF), Decision Tree and Multilayer Perceptron (MLP). Experimental results show that our proposed algorithm achieves better results than the comparison targets, which indicates promising robustness for practical clinical implementation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3