Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark and New Motion Models

Author:

Li Siyi,Yeung Dit-Yan

Abstract

Despite recent advances in the visual tracking community, most studies so far have focused on the observation model. As another important component in the tracking system, the motion model is much less well-explored especially for some extreme scenarios. In this paper, we consider one such scenario in which the camera is mounted on an unmanned aerial vehicle (UAV) or drone. We build a benchmark dataset of high diversity, consisting of 70 videos captured by drone cameras. To address the challenging issue of severe camera motion, we devise simple baselines to model the camera motion by geometric transformation based on background feature points. An extensive comparison of recent state-of-the-art trackers and their motion model variants on our drone tracking dataset validates both the necessity of the dataset and the effectiveness of the proposed methods. Our aim for this work is to lay the foundation for further research in the UAV tracking area.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3