Fast Generalized Distillation for Semi-Supervised Domain Adaptation

Author:

Ao Shuang,Li Xiang,Ling Charles

Abstract

Semi-supervised domain adaptation (SDA) is a typical setting when we face the problem of domain adaptation in real applications. How to effectively utilize the unlabeled data is an important issue in SDA. Previous work requires access to the source data to measure the data distribution mismatch, which is ineffective when the size of the source data is relatively large. In this paper, we propose a new paradigm, called Generalized Distillation Semi-supervised Domain Adaptation (GDSDA). We show that without accessing the source data, GDSDA can effectively utilize the unlabeled data to transfer the knowledge from the source models. Then we propose GDSDA-SVM which uses SVM as the base classifier and can efficiently solve the SDA problem. Experimental results show that GDSDA-SVM can effectively utilize the unlabeled data to transfer the knowledge between different domains under the SDA setting.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Survey on Source-Free Domain Adaptation;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-08

2. A Comprehensive Survey on Test-Time Adaptation Under Distribution Shifts;International Journal of Computer Vision;2024-07-18

3. Embracing Semi-supervised Domain Adaptation for Federated Knowledge Transfer;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Unsupervised Domain Adaptation for RF-Based Gesture Recognition;IEEE Internet of Things Journal;2023-12-01

5. Semi-supervised Domain Adaptation via Joint Contrastive Learning with Sensitivity;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3