Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification

Author:

Hand Emily,Chellappa Rama

Abstract

Attributes, or mid-level semantic features, have gained popularity in the past few years in domains ranging from activity recognition to face verification. Improving the accuracy of attribute classifiers is an important first step in any application which uses these attributes. In most works to date, attributes have been considered independent of each other. However, attributes can be strongly related, such as heavy makeup and wearing lipstick as well as male and goatee and many others. We propose a multi-task deep convolutional neural network (MCNN) with an auxiliary network at the top (AUX) which takes advantage of attribute relationships for improved classification. We call our final network MCNN-AUX. MCNN-AUX uses attribute relationships in three ways: by sharing the lowest layers for all attributes, by sharing the higher layers for spatially-related attributes, and by feeding the attribute scores from MCNN into the AUX network to find score-level relationships. Using MCNN-AUX rather than individual attribute classifiers, we are able to reduce the number of parameters in the network from 64 million to fewer than 16 million and reduce the training time by a factor of 16. We demonstrate the effectiveness of our method by producing results on two challenging publicly available datasets achieving state-of-the-art performance on many attributes.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Group Multi-Stream attribute Attention network for fine-grained zero-shot learning;Neural Networks;2024-11

2. A face retrieval technique combining large models and artificial neural networks;Concurrency and Computation: Practice and Experience;2024-03-25

3. Facial Attribute Analysis;Handbook of Face Recognition;2023-12-30

4. Scattering-based hybrid network for facial attribute classification;Frontiers of Computer Science;2023-11-25

5. Facial Attribute Recognition Using Lightweight Multi-Label CNN-Transformer Architecture for Intelligent Advertising;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3