Author:
Huang Zhenya,Liu Qi,Chen Enhong,Zhao Hongke,Gao Mingyong,Wei Si,Su Yu,Hu Guoping
Abstract
Standard tests aim to evaluate the performance of examinees using different tests with consistent difficulties. Thus, a critical demand is to predict the difficulty of each test question before the test is conducted. Existing studies are usually based on the judgments of education experts (e.g., teachers), which may be subjective and labor intensive. In this paper, we propose a novel Test-aware Attention-based Convolutional Neural Network (TACNN) framework to automatically solve this Question Difficulty Prediction (QDP) task for READING problems (a typical problem style in English tests) in standard tests. Specifically, given the abundant historical test logs and text materials of questions, we first design a CNN-based architecture to extract sentence representations for the questions. Then, we utilize an attention strategy to qualify the difficulty contribution of each sentence to questions. Considering the incomparability of question difficulties in different tests, we propose a test-dependent pairwise strategy for training TACNN and generating the difficulty prediction value. Extensive experiments on a real-world dataset not only show the effectiveness of TACNN, but also give interpretable insights to track the attention information for questions.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献