MPGL: An Efficient Matching Pursuit Method for Generalized LASSO

Author:

Gong Dong,Tan Mingkui,Zhang Yanning,Van den Hengel Anton,Shi Qinfeng

Abstract

Unlike traditional LASSO enforcing sparsity on the variables, Generalized LASSO (GL) enforces sparsity on a linear transformation of the variables, gaining flexibility and success in many applications. However, many existing GL algorithms do not scale up to high-dimensional problems, and/or only work well for a specific choice of the transformation. We propose an efficient Matching Pursuit Generalized LASSO (MPGL) method, which overcomes these issues, and is guaranteed to converge to a global optimum. We formulate the GL problem as a convex quadratic constrained linear programming (QCLP) problem and tailor-make a cutting plane method. More specifically, our MPGL iteratively activates a subset of nonzero elements of the transformed variables, and solves a subproblem involving only the activated elements thus gaining significant speed-up. Moreover, MPGL is less sensitive to the choice of the trade-off hyper-parameter between data fitting and regularization, and mitigates the long-standing hyper-parameter tuning issue in many existing methods. Experiments demonstrate the superior efficiency and accuracy of the proposed method over the state-of-the-arts in both classification and image processing tasks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient path algorithms for clustered Lasso and OSCAR;Japanese Journal of Statistics and Data Science;2024-09-14

2. Characterization of the solutions set of the generalized LASSO problems for non-full rank cases;Electronic Journal of Statistics;2023-01-01

3. Image Deblurring Based on Normalized-weighted Total Variation;2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC);2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3