The Effects of Meaningful and Meaningless Explanations on Trust and Perceived System Accuracy in Intelligent Systems

Author:

Nourani Mahsan,Kabir Samia,Mohseni Sina,Ragan Eric D.

Abstract

Machine learning and artificial intelligence algorithms can assist human decision making and analysis tasks. While such technology shows promise, willingness to use and rely on intelligent systems may depend on whether people can trust and understand them. To address this issue, researchers have explored the use of explainable interfaces that attempt to help explain why or how a system produced the output for a given input. However, the effects of meaningful and meaningless explanations (determined by their alignment with human logic) are not properly understood, especially with users who are non-experts in data science. Additionally, we wanted to explore how explanation inclusion and level of meaningfulness would affect the user’s perception of accuracy. We designed a controlled experiment using an image classification scenario with local explanations to evaluate and better understand these issues. Our results show that whether explanations are human-meaningful can significantly affect perception of a system’s accuracy independent of the actual accuracy observed from system usage. Participants significantly underestimated the system’s accuracy when it provided weak, less human-meaningful explanations. Therefore, for intelligent systems with explainable interfaces, this research demonstrates that users are less likely to accurately judge the accuracy of algorithms that do not operate based on human-understandable rationale.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Learning Model-Agnostic Explanations for Deep Learning-Based Signal Modulation Classifiers;IEEE Transactions on Reliability;2024-09

2. Understanding Trust and Reliance Development in AI Advice: Assessing Model Accuracy, Model Explanations, and Experiences from Previous Interactions.;ACM Transactions on Interactive Intelligent Systems;2024-08-02

3. “DecisionTime”: A Configurable Framework for Reproducible Human-AI Decision-Making Studies;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27

4. Evaluating Human-Centered AI Explanations: Introduction of an XAI Evaluation Framework for Fact-Checking;3rd ACM International Workshop on Multimedia AI against Disinformation;2024-06-10

5. One vs. Many: Comprehending Accurate Information from Multiple Erroneous and Inconsistent AI Generations;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3