Author:
Abbas Tahir,Gadiraju Ujwal,Khan Vassilis-Javed,Markopoulos Panos
Abstract
Crowd-Powered Conversational Systems (CPCS) are gaining traction due to their potential utility in a range of application fields where automated conversational interfaces are still inadequate. Currently, long response times negatively impact CPCSs, limiting their potential application as conversational partners. Related research has focused on developing algorithms for swiftly hiring workers and synchronous crowd coordination techniques to ensure high-quality work. Evaluation studies typically concern system reaction times and performance measurements, but have so far not examined the effects of extended wait times on users. The goal of this study, based on time perception models, is to explore how effective different time fillers
are at reducing the negative impacts of waiting in CPCSs. To this end, we conducted a rigorous simulation-based between-subjects (N = 930) study on the Prolific crowdsourcing platform to assess the influence of different filler types across three levels of delay (8, 16 & 32s) for Information Retrieval (IR) and stress management tasks. Our results show that asking users to perform secondary tasks (e.g., microtasks or breathing exercises) while waiting for longer periods of time helped divert their attention away from timekeeping, increased their engagement, and resulted in shorter perceived waiting times. For shorter delays, conversational fillers generated more intense immersion and contributed to shorten the perception of time.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. When in Doubt! Understanding the Role of Task Characteristics on Peer Decision-Making with AI Assistance;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22
2. "Are we all in the same boat?" Customizable and Evolving Avatars to Improve Worker Engagement and Foster a Sense of Community in Online Crowd Work;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11
3. Robot Feedback Design for Response Delay;International Journal of Social Robotics;2023-12-22
4. ContextBot;Proceedings of the 34th ACM Conference on Hypertext and Social Media;2023-09-04
5. Understanding User Perceptions of Response Delays in Crowd-Powered Conversational Systems;Proceedings of the ACM on Human-Computer Interaction;2022-11-07