Author:
Kim Woojun,Cho Myungsik,Sung Youngchul
Abstract
In this paper, we propose a new learning technique named message-dropout to improve the performance for multi-agent deep reinforcement learning under two application scenarios: 1) classical multi-agent reinforcement learning with direct message communication among agents and 2) centralized training with decentralized execution. In the first application scenario of multi-agent systems in which direct message communication among agents is allowed, the messagedropout technique drops out the received messages from other agents in a block-wise manner with a certain probability in the training phase and compensates for this effect by multiplying the weights of the dropped-out block units with a correction probability. The applied message-dropout technique effectively handles the increased input dimension in multi-agent reinforcement learning with communication and makes learning robust against communication errors in the execution phase. In the second application scenario of centralized training with decentralized execution, we particularly consider the application of the proposed messagedropout to Multi-Agent Deep Deterministic Policy Gradient (MADDPG), which uses a centralized critic to train a decentralized actor for each agent. We evaluate the proposed message-dropout technique for several games, and numerical results show that the proposed message-dropout technique with proper dropout rate improves the reinforcement learning performance significantly in terms of the training speed and the steady-state performance in the execution phase.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献