Abstract
As a novel learning paradigm, label distribution learning (LDL) explicitly models label ambiguity with the definition of label description degree. Although lots of work has been done to deal with real-world applications, theoretical results on LDL remain unexplored. In this paper, we rethink LDL from theoretical aspects, towards analyzing learnability of LDL. Firstly, risk bounds for three representative LDL algorithms (AA-kNN, AA-BP and SA-ME) are provided. For AA-kNN, Lipschitzness of the label distribution function is assumed to bound the risk, and for AA-BP and SA-ME, rademacher complexity is utilized to give data-dependent risk bounds. Secondly, a generalized plug-in decision theorem is proposed to understand the relation between LDL and classification, uncovering that approximation to the conditional probability distribution function in absolute loss guarantees approaching to the optimal classifier, and also data-dependent error probability bounds are presented for the corresponding LDL algorithms to perform classification. As far as we know, this is perhaps the first research on theory of LDL.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献