Recurrent Attention Model for Pedestrian Attribute Recognition

Author:

Zhao Xin,Sang Liufang,Ding Guiguang,Han Jungong,Di Na,Yan Chenggang

Abstract

Pedestrian attribute recognition is to predict attribute labels of pedestrian from surveillance images, which is a very challenging task for computer vision due to poor imaging quality and small training dataset. It is observed that many semantic pedestrian attributes to be recognised tend to show spatial locality and semantic correlations by which they can be grouped while previous works mostly ignore this phenomenon. Inspired by Recurrent Neural Network (RNN)’s super capability of learning context correlations and Attention Model’s capability of highlighting the region of interest on feature map, this paper proposes end-to-end Recurrent Convolutional (RC) and Recurrent Attention (RA) models, which are complementary to each other. RC model mines the correlations among different attribute groups with convolutional LSTM unit, while RA model takes advantage of the intra-group spatial locality and inter-group attention correlation to improve the performance of pedestrian attribute recognition. Our RA method combines the Recurrent Learning and Attention Model to highlight the spatial position on feature map and mine the attention correlations among different attribute groups to obtain more precise attention. Extensive empirical evidence shows that our recurrent model frameworks achieve state-of-the-art results, based on pedestrian attribute datasets, i.e. standard PETA and RAP datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MCGCN: Multi-Correlation Graph Convolutional Network for Pedestrian Attribute Recognition;IEICE Transactions on Information and Systems;2024-03-01

2. Let’s Observe Them Over Time: An Improved Pedestrian Attribute Recognition Approach;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

3. PARFormer: Transformer-Based Multi-Task Network for Pedestrian Attribute Recognition;IEEE Transactions on Circuits and Systems for Video Technology;2024-01

4. Improving Pedestrian Attribute Recognition with Dense Feature Pyramid and Mixed Pooling;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

5. Hi-GoTE: Hierarchical Group-Wise Temporal Ensembling for Semi-Supervised Pedestrian Attribute Recognition;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3