Response Generation by Context-Aware Prototype Editing

Author:

Wu Yu,Wei Furu,Huang Shaohan,Wang Yunli,Li Zhoujun,Zhou Ming

Abstract

Open domain response generation has achieved remarkable progress in recent years, but sometimes yields short and uninformative responses. We propose a new paradigm, prototypethen-edit for response generation, that first retrieves a prototype response from a pre-defined index and then edits the prototype response according to the differences between the prototype context and current context. Our motivation is that the retrieved prototype provides a good start-point for generation because it is grammatical and informative, and the post-editing process further improves the relevance and coherence of the prototype. In practice, we design a contextaware editing model that is built upon an encoder-decoder framework augmented with an editing vector. We first generate an edit vector by considering lexical differences between a prototype context and current context. After that, the edit vector and the prototype response representation are fed to a decoder to generate a new response. Experiment results on a large scale dataset demonstrate that our new paradigm significantly increases the relevance, diversity and originality of generation results, compared to traditional generative models. Furthermore, our model outperforms retrieval-based methods in terms of relevance and originality.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Demonstration Retrieval and Cognitive Understanding for Emotional Support Conversation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Leveraging Intent Entity Enhancement for Task-Oriented Dialogue;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Enhancing User Experience in Chinese Initial Text Conversations with Personalised AI-Powered Assistant;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Math Word Problem Generation via Disentangled Memory Retrieval;ACM Transactions on Knowledge Discovery from Data;2024-03-26

5. Unsupervised Disentanglement Learning Model for Exemplar-Guided Paraphrase Generation;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3