Author:
Qian Qi,Zhu Shenghuo,Tang Jiasheng,Jin Rong,Sun Baigui,Li Hao
Abstract
In this work, we study the problem of learning a single model for multiple domains. Unlike the conventional machine learning scenario where each domain can have the corresponding model, multiple domains (i.e., applications/users) may share the same machine learning model due to maintenance loads in cloud computing services. For example, a digit-recognition model should be applicable to hand-written digits, house numbers, car plates, etc. Therefore, an ideal model for cloud computing has to perform well at each applicable domain. To address this new challenge from cloud computing, we develop a framework of robust optimization over multiple domains. In lieu of minimizing the empirical risk, we aim to learn a model optimized to the adversarial distribution over multiple domains. Hence, we propose to learn the model and the adversarial distribution simultaneously with the stochastic algorithm for efficiency. Theoretically, we analyze the convergence rate for convex and non-convex models. To our best knowledge, we first study the convergence rate of learning a robust non-convex model with a practical algorithm. Furthermore, we demonstrate that the robustness of the framework and the convergence rate can be further enhanced by appropriate regularizers over the adversarial distribution. The empirical study on real-world fine-grained visual categorization and digits recognition tasks verifies the effectiveness and efficiency of the proposed framework.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Agree to Disagree: Personalized Temporal Embedding and Routing for Stock Forecast;IEEE Transactions on Knowledge and Data Engineering;2024-09
2. Efficient Federated Learning via Joint Communication and Computation Optimization;IEEE Transactions on Vehicular Technology;2024-08
3. Convergence Rates of Gradient Descent-Ascent Dynamics Under Delays in Solving Nonconvex Min-Max Optimization;2024 European Control Conference (ECC);2024-06-25
4. Federated Anomaly Detection;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S);2024-06-24
5. Mind the Label Shift of Augmentation-based Graph OOD Generalization;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06