Robust Optimization over Multiple Domains

Author:

Qian Qi,Zhu Shenghuo,Tang Jiasheng,Jin Rong,Sun Baigui,Li Hao

Abstract

In this work, we study the problem of learning a single model for multiple domains. Unlike the conventional machine learning scenario where each domain can have the corresponding model, multiple domains (i.e., applications/users) may share the same machine learning model due to maintenance loads in cloud computing services. For example, a digit-recognition model should be applicable to hand-written digits, house numbers, car plates, etc. Therefore, an ideal model for cloud computing has to perform well at each applicable domain. To address this new challenge from cloud computing, we develop a framework of robust optimization over multiple domains. In lieu of minimizing the empirical risk, we aim to learn a model optimized to the adversarial distribution over multiple domains. Hence, we propose to learn the model and the adversarial distribution simultaneously with the stochastic algorithm for efficiency. Theoretically, we analyze the convergence rate for convex and non-convex models. To our best knowledge, we first study the convergence rate of learning a robust non-convex model with a practical algorithm. Furthermore, we demonstrate that the robustness of the framework and the convergence rate can be further enhanced by appropriate regularizers over the adversarial distribution. The empirical study on real-world fine-grained visual categorization and digits recognition tasks verifies the effectiveness and efficiency of the proposed framework.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agree to Disagree: Personalized Temporal Embedding and Routing for Stock Forecast;IEEE Transactions on Knowledge and Data Engineering;2024-09

2. Efficient Federated Learning via Joint Communication and Computation Optimization;IEEE Transactions on Vehicular Technology;2024-08

3. Convergence Rates of Gradient Descent-Ascent Dynamics Under Delays in Solving Nonconvex Min-Max Optimization;2024 European Control Conference (ECC);2024-06-25

4. Federated Anomaly Detection;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S);2024-06-24

5. Mind the Label Shift of Augmentation-based Graph OOD Generalization;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3