Spatio-Temporal Graph Routing for Skeleton-Based Action Recognition

Author:

Li Bin,Li Xi,Zhang Zhongfei,Wu Fei

Abstract

With the representation effectiveness, skeleton-based human action recognition has received considerable research attention, and has a wide range of real applications. In this area, many existing methods typically rely on fixed physicalconnectivity skeleton structure for recognition, which is incapable of well capturing the intrinsic high-order correlations among skeleton joints. In this paper, we propose a novel spatio-temporal graph routing (STGR) scheme for skeletonbased action recognition, which adaptively learns the intrinsic high-order connectivity relationships for physicallyapart skeleton joints. Specifically, the scheme is composed of two components: spatial graph router (SGR) and temporal graph router (TGR). The SGR aims to discover the connectivity relationships among the joints based on sub-group clustering along the spatial dimension, while the TGR explores the structural information by measuring the correlation degrees between temporal joint node trajectories. The proposed scheme is naturally and seamlessly incorporated into the framework of graph convolutional networks (GCNs) to produce a set of skeleton-joint-connectivity graphs, which are further fed into the classification networks. Moreover, an insightful analysis on receptive field of graph node is provided to explain the necessity of our method. Experimental results on two benchmark datasets (NTU-RGB+D and Kinetics) demonstrate the effectiveness against the state-of-the-art.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3