Author:
Liu Pengpeng,King Irwin,Lyu Michael R.,Xu Jia
Abstract
We present DDFlow, a data distillation approach to learning optical flow estimation from unlabeled data. The approach distills reliable predictions from a teacher network, and uses these predictions as annotations to guide a student network to learn optical flow. Unlike existing work relying on handcrafted energy terms to handle occlusion, our approach is data-driven, and learns optical flow for occluded pixels. This enables us to train our model with a much simpler loss function, and achieve a much higher accuracy. We conduct a rigorous evaluation on the challenging Flying Chairs, MPI Sintel, KITTI 2012 and 2015 benchmarks, and show that our approach significantly outperforms all existing unsupervised learning methods, while running at real time.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献