Data-Distortion Guided Self-Distillation for Deep Neural Networks

Author:

Xu Ting-Bing,Liu Cheng-Lin

Abstract

Knowledge distillation is an effective technique that has been widely used for transferring knowledge from a network to another network. Despite its effective improvement of network performance, the dependence of accompanying assistive models complicates the training process of single network in the need of large memory and time cost. In this paper, we design a more elegant self-distillation mechanism to transfer knowledge between different distorted versions of same training data without the reliance on accompanying models. Specifically, the potential capacity of single network is excavated by learning consistent global feature distributions and posterior distributions (class probabilities) across these distorted versions of data. Extensive experiments on multiple datasets (i.e., CIFAR-10/100 and ImageNet) demonstrate that the proposed method can effectively improve the generalization performance of various network architectures (such as AlexNet, ResNet, Wide ResNet, and DenseNet), outperform existing distillation methods with little extra training efforts.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3