Machine Teaching for Inverse Reinforcement Learning: Algorithms and Applications

Author:

Brown Daniel S.,Niekum Scott

Abstract

Inverse reinforcement learning (IRL) infers a reward function from demonstrations, allowing for policy improvement and generalization. However, despite much recent interest in IRL, little work has been done to understand the minimum set of demonstrations needed to teach a specific sequential decisionmaking task. We formalize the problem of finding maximally informative demonstrations for IRL as a machine teaching problem where the goal is to find the minimum number of demonstrations needed to specify the reward equivalence class of the demonstrator. We extend previous work on algorithmic teaching for sequential decision-making tasks by showing a reduction to the set cover problem which enables an efficient approximation algorithm for determining the set of maximallyinformative demonstrations. We apply our proposed machine teaching algorithm to two novel applications: providing a lower bound on the number of queries needed to learn a policy using active IRL and developing a novel IRL algorithm that can learn more efficiently from informative demonstrations than a standard IRL approach.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse Reinforcement Learning;Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

2. Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects;IEEE/CAA Journal of Automatica Sinica;2024-02

3. Learning data teaching strategies via knowledge tracing;Knowledge-Based Systems;2023-06

4. Transparent Value Alignment;Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction;2023-03-13

5. How Reinforcement Learning is Helping to Solve Internet-of-Underwater-Things Problems;IEEE Internet of Things Magazine;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3