Semantic Adversarial Network with Multi-Scale Pyramid Attention for Video Classification

Author:

Xie De,Deng Cheng,Wang Hao,Li Chao,Tao Dapeng

Abstract

Two-stream architecture have shown strong performance in video classification task. The key idea is to learn spatiotemporal features by fusing convolutional networks spatially and temporally. However, there are some problems within such architecture. First, it relies on optical flow to model temporal information, which are often expensive to compute and store. Second, it has limited ability to capture details and local context information for video data. Third, it lacks explicit semantic guidance that greatly decrease the classification performance. In this paper, we proposed a new two-stream based deep framework for video classification to discover spatial and temporal information only from RGB frames, moreover, the multi-scale pyramid attention (MPA) layer and the semantic adversarial learning (SAL) module is introduced and integrated in our framework. The MPA enables the network capturing global and local feature to generate a comprehensive representation for video, and the SAL can make this representation gradually approximate to the real video semantics in an adversarial manner. Experimental results on two public benchmarks demonstrate our proposed methods achieves state-of-the-art results on standard video datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A2SN: attention based two stream network for sports video classification;Multimedia Tools and Applications;2024-02-08

2. Rich Action-Semantic Consistent Knowledge for Early Action Prediction;IEEE Transactions on Image Processing;2024

3. Thermal Infrared Image Colorization for Nighttime Driving Scenes With Top-Down Guided Attention;IEEE Transactions on Intelligent Transportation Systems;2022-09

4. QuasiVSD: efficient dual-frame smoke detection;Neural Computing and Applications;2022-02-16

5. Object-Agnostic Transformers for Video Referring Segmentation;IEEE Transactions on Image Processing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3