Author:
Heo Byeongho,Lee Minsik,Yun Sangdoo,Choi Jin Young
Abstract
An activation boundary for a neuron refers to a separating hyperplane that determines whether the neuron is activated or deactivated. It has been long considered in neural networks that the activations of neurons, rather than their exact output values, play the most important role in forming classificationfriendly partitions of the hidden feature space. However, as far as we know, this aspect of neural networks has not been considered in the literature of knowledge transfer. In this paper, we propose a knowledge transfer method via distillation of activation boundaries formed by hidden neurons. For the distillation, we propose an activation transfer loss that has the minimum value when the boundaries generated by the student coincide with those by the teacher. Since the activation transfer loss is not differentiable, we design a piecewise differentiable loss approximating the activation transfer loss. By the proposed method, the student learns a separating boundary between activation region and deactivation region formed by each neuron in the teacher. Through the experiments in various aspects of knowledge transfer, it is verified that the proposed method outperforms the current state-of-the-art.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
205 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献