Improving One-Class Collaborative Filtering via Ranking-Based Implicit Regularizer

Author:

Chen Jin,Lian Defu,Zheng Kai

Abstract

One-class collaborative filtering (OCCF) problems are vital in many applications of recommender systems, such as news and music recommendation, but suffers from sparsity issues and lacks negative examples. To address this problem, the state-of-the-arts assigned smaller weights to unobserved samples and performed low-rank approximation. However, the ground-truth ratings of unobserved samples are usually set to zero but ill-defined. In this paper, we propose a ranking-based implicit regularizer and provide a new general framework for OCCF, to avert the ground-truth ratings of unobserved samples. We then exploit it to regularize a ranking-based loss function and design efficient optimization algorithms to learn model parameters. Finally, we evaluate them on three realworld datasets. The results show that the proposed regularizer significantly improves ranking-based algorithms and that the proposed framework outperforms the state-of-the-art OCCF algorithms.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rethinking Collaborative Metric Learning: Toward an Efficient Alternative Without Negative Sampling;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-01-01

2. Neu-PCM: Neural-based potential correlation mining for POI recommendation;Applied Intelligence;2022-08-23

3. An α–β-Divergence-Generalized Recommender for Highly Accurate Predictions of Missing User Preferences;IEEE Transactions on Cybernetics;2022-08

4. SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

5. Improving Implicit Alternating Least Squares with Ring-based Regularization;Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval;2022-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3