Efficient Region Embedding with Multi-View Spatial Networks: A Perspective of Locality-Constrained Spatial Autocorrelations

Author:

Fu Yanjie,Wang Pengyang,Du Jiadi,Wu Le,Li Xiaolin

Abstract

Urban regions are places where people live, work, consume, and entertain. In this study, we investigate the problem of learning an embedding space for regions. Studying the representations of regions can help us to better understand the patterns, structures, and dynamics of cities, support urban planning, and, ultimately, to make our cities more livable and sustainable. While some efforts have been made for learning the embeddings of regions, existing methods can be improved by incorporating locality-constrained spatial autocorrelations into an encode-decode framework. Such embedding strategy is capable of taking into account both intra-region structural information and inter-region spatial autocorrelations. To this end, we propose to learn the representations of regions via a new embedding strategy with awareness of locality-constrained spatial autocorrelations. Specifically, we first construct multi-view (i.e., distance and mobility connectivity) POI-POI networks to represent regions. In addition, we introduce two properties into region embedding: (i) spatial autocorrelations: a global similarity between regions; (ii) top-k locality: spatial autocorrelations locally and approximately reside on top k most autocorrelated regions. We propose a new encoder-decoder based formulation that preserves the two properties while remaining efficient. As an application, we exploit the learned embeddings to predict the mobile checkin popularity of regions. Finally, extensive experiments with real-world urban region data demonstrate the effectiveness and efficiency of our method.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlook;Information Fusion;2025-01

2. ReFound: Crafting a Foundation Model for Urban Region Understanding upon Language and Visual Foundations;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Towards effective urban region-of-interest demand modeling via graph representation learning;Data Mining and Knowledge Discovery;2024-07-03

4. A Novel Framework for Joint Learning of City Region Partition and Representation;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-05-16

5. Urban Region Representation Learning with Attentive Fusion;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3