Active Sampling for Open-Set Classification without Initial Annotation

Author:

Liu Zhao-Yang,Huang Sheng-Jun

Abstract

Open-set classification is a common problem in many real world tasks, where data is collected for known classes, and some novel classes occur at the test stage. In this paper, we focus on a more challenging case where the data examples collected for known classes are all unlabeled. Due to the high cost of label annotation, it is rather important to train a model with least labeled data for both accurate classification on known classes and effective detection of novel classes. Firstly, we propose an active learning method by incorporating structured sparsity with diversity to select representative examples for annotation. Then a latent low-rank representation is employed to simultaneously perform classification and novel class detection. Also, the method along with a fast optimization solution is extended to a multi-stage scenario, where classes occur and disappear in batches at each stage. Experimental results on multiple datasets validate the superiority of the proposed method with regard to different performance measures.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-training and Active Learning with Pseudo-relevance Feedback for Handwriting Detection in Historical Print;Lecture Notes in Computer Science;2024

2. Biological Tissue Sections Instance Segmentation Based on Active Learning;Communications in Computer and Information Science;2023-11-26

3. Heterogeneous Diversity Driven Active Learning for Multi-Object Tracking;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

4. Open world long-tailed data classification through active distribution optimization;Expert Systems with Applications;2023-03

5. Multiple Instance Differentiation Learning for Active Object Detection;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3