Meimei: An Efficient Probabilistic Approach for Semantically Annotating Tables

Author:

Takeoka Kunihiro,Oyamada Masafumi,Nakadai Shinji,Okadome Takeshi

Abstract

Given a large amount of table data, how can we find the tables that contain the contents we want? A naive search fails when the column names are ambiguous, such as if columns containing stock price information are named “Close” in one table and named “P” in another table.One way of dealing with this problem that has been gaining attention is the semantic annotation of table data columns by using canonical knowledge. While previous studies successfully dealt with this problem for specific types of table data such as web tables, it still remains for various other types of table data: (1) most approaches do not handle table data with numerical values, and (2) their predictive performance is not satisfactory.This paper presents a novel approach for table data annotation that combines a latent probabilistic model with multilabel classifiers. It features three advantages over previous approaches due to using highly predictive multi-label classifiers in the probabilistic computation of semantic annotation. (1) It is more versatile due to using multi-label classifiers in the probabilistic model, which enables various types of data such as numerical values to be supported. (2) It is more accurate due to the multi-label classifiers and probabilistic model working together to improve predictive performance. (3) It is more efficient due to potential functions based on multi-label classifiers reducing the computational cost for annotation.Extensive experiments demonstrated the superiority of the proposed approach over state-of-the-art approaches for semantic annotation of real data (183 human-annotated tables obtained from the UCI Machine Learning Repository).

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Annotation of Russian-Language Tables Based on a Pre-Trained Language Model;2024 Ivannikov Memorial Workshop (IVMEM);2024-05-17

2. Semantic Annotation of Relational Schemas Using a Probabilistic Generative Model;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

3. A Joint Multi-task Learning Model for Web Table-to-Knowledge Graph Matching;Lecture Notes in Computer Science;2024

4. NumJoin: Discovering Numeric Joinable Tables with Semantically Related Columns;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

5. SAND: Semantic Annotation of Numeric Data in Web Tables;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3