DeepFuzz: Automatic Generation of Syntax Valid C Programs for Fuzz Testing

Author:

Liu Xiao,Li Xiaoting,Prajapati Rupesh,Wu Dinghao

Abstract

Compilers are among the most fundamental programming tools for building software. However, production compilers remain buggy. Fuzz testing is often leveraged with newlygenerated, or mutated inputs in order to find new bugs or security vulnerabilities. In this paper, we propose a grammarbased fuzzing tool called DEEPFUZZ. Based on a generative Sequence-to-Sequence model, DEEPFUZZ automatically and continuously generates well-formed C programs. We use this set of new C programs to fuzz off-the-shelf C compilers, e.g., GCC and Clang/LLVM. We present a detailed case study to analyze the success rate and coverage improvement of the generated C programs for fuzz testing. We analyze the performance of DEEPFUZZ with three types of sampling methods as well as three types of generation strategies. Consequently, DEEPFUZZ improved the testing efficacy in regards to the line, function, and branch coverage. In our preliminary study, we found and reported 8 bugs of GCC, all of which are actively being addressed by developers.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzing JavaScript Interpreters with Coverage-Guided Reinforcement Learning for LLM-Based Mutation;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Tacoma: Enhanced Browser Fuzzing with Fine-Grained Semantic Alignment;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

3. AsFuzzer: Differential Testing of Assemblers with Error-Driven Grammar Inference;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

4. Fuzzing JavaScript engines with a syntax-aware neural program model;Computers & Security;2024-09

5. Differential testing solidity compiler through deep contract manipulation and mutation;Software Quality Journal;2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3