On Lifted Inference Using Neural Embeddings

Author:

Islam Mohammad Maminur,Sarkhel Somdeb,Venugopal Deepak

Abstract

We present a dense representation for Markov Logic Networks (MLNs) called Obj2Vec that encodes symmetries in the MLN structure. Identifying symmetries is a key challenge for lifted inference algorithms and we leverage advances in neural networks to learn symmetries which are hard to specify using hand-crafted features. Specifically, we learn an embedding for MLN objects that predicts the context of an object, i.e., objects that appear along with it in formulas of the MLN, since common contexts indicate symmetry in the distribution. Importantly, our formulation leverages well-known skip-gram models that allow us to learn the embedding efficiently. Finally, to reduce the size of the ground MLN, we sample objects based on their learned embeddings. We integrate Obj2Vec with several inference algorithms, and show the scalability and accuracy of our approach compared to other state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpretable Explanations for Probabilistic Inference in Markov Logic;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

2. Contrastive Learning in Neural Tensor Networks using Asymmetric Examples;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3