A Bottom-Up Clustering Approach to Unsupervised Person Re-Identification

Author:

Lin Yutian,Dong Xuanyi,Zheng Liang,Yan Yan,Yang Yi

Abstract

Most person re-identification (re-ID) approaches are based on supervised learning, which requires intensive manual annotation for training data. However, it is not only resourceintensive to acquire identity annotation but also impractical to label the large-scale real-world data. To relieve this problem, we propose a bottom-up clustering (BUC) approach to jointly optimize a convolutional neural network (CNN) and the relationship among the individual samples. Our algorithm considers two fundamental facts in the re-ID task, i.e., diversity across different identities and similarity within the same identity. Specifically, our algorithm starts with regarding individual sample as a different identity, which maximizes the diversity over each identity. Then it gradually groups similar samples into one identity, which increases the similarity within each identity. We utilizes a diversity regularization term in the bottom-up clustering procedure to balance the data volume of each cluster. Finally, the model achieves an effective trade-off between the diversity and similarity. We conduct extensive experiments on the large-scale image and video re-ID datasets, including Market-1501, DukeMTMCreID, MARS and DukeMTMC-VideoReID. The experimental results demonstrate that our algorithm is not only superior to state-of-the-art unsupervised re-ID approaches, but also performs favorably than competing transfer learning and semi-supervised learning methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 242 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3