DeepETA: A Spatial-Temporal Sequential Neural Network Model for Estimating Time of Arrival in Package Delivery System

Author:

Wu Fan,Wu Lixia

Abstract

Over 100 million packages are delivered every day in China due to the fast development of e-commerce. Precisely estimating the time of packages’ arrival (ETA) is significantly important to improving customers’ experience and raising the efficiency of package dispatching. Existing methods mainly focus on predicting the time from an origin to a destination. However, in package delivery problem, one trip contains multiple destinations and the delivery time of all destinations should be predicted at any time. Furthermore, the ETA is affected by many factors especially the sequence of the latest route, the regularity of the delivery pattern and the sequence of packages to be delivered, which are difficult to learn by traditional models. This paper proposed a novel spatial-temporal sequential neural network model (DeepETA) to take fully advantages of the above factors. DeepETA is an end-to-end network that mainly consists of three parts. First, the spatial encoding and the recurrent cells are proposed to capture the spatial-temporal and sequential features of the latest delivery route. Then, two attention-based layers are designed to indicate the most possible ETA from historical frequent and relative delivery routes based on the similarity of the latest route and the future destinations. Finally, a fully connected layer is utilized to jointly learn the delivery time. Experiments on real logistics dataset demonstrate that the proposed approach has outperforming results.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LaDe: The First Comprehensive Last-mile Express Dataset from Industry;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Fine-grained Courier Delivery Behavior Recovery with a Digital Twin Based Iterative Calibration Framework;ACM Transactions on Intelligent Systems and Technology;2024-06-13

3. Improved Marine Predators Algorithm and Extreme Gradient Boosting (XGBoost) for shipment status time prediction;Knowledge-Based Systems;2024-06

4. Estimating package arrival time via heterogeneous hypergraph neural network;Expert Systems with Applications;2024-03

5. Package Arrival Time Prediction via Knowledge Distillation Graph Neural Network;ACM Transactions on Knowledge Discovery from Data;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3