Author:
Gallego Victor,Naveiro Roi,Insua David Rios
Abstract
In several reinforcement learning (RL) scenarios, mainly in security settings, there may be adversaries trying to interfere with the reward generating process. However, when non-stationary environments as such are considered, Q-learning leads to suboptimal results (Busoniu, Babuska, and De Schutter 2010). Previous game-theoretical approaches to this problem have focused on modeling the whole multi-agent system as a game. Instead, we shall face the problem of prescribing decisions to a single agent (the supported decision maker, DM) against a potential threat model (the adversary). We augment the MDP to account for this threat, introducing Threatened Markov Decision Processes (TMDPs). Furthermore, we propose a level-k thinking scheme resulting in a new learning framework to deal with TMDPs. We empirically test our framework, showing the benefits of opponent modeling.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献