Author:
Keshari Rohit,Singh Richa,Vatsa Mayank
Abstract
Dropout is often used in deep neural networks to prevent over-fitting. Conventionally, dropout training invokes random drop of nodes from the hidden layers of a Neural Network. It is our hypothesis that a guided selection of nodes for intelligent dropout can lead to better generalization as compared to the traditional dropout. In this research, we propose “guided dropout” for training deep neural network which drop nodes by measuring the strength of each node. We also demonstrate that conventional dropout is a specific case of the proposed guided dropout. Experimental evaluation on multiple datasets including MNIST, CIFAR10, CIFAR100, SVHN, and Tiny ImageNet demonstrate the efficacy of the proposed guided dropout.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献