TransNFCM: Translation-Based Neural Fashion Compatibility Modeling

Author:

Yang Xun,Ma Yunshan,Liao Lizi,Wang Meng,Chua Tat-Seng

Abstract

Identifying mix-and-match relationships between fashion items is an urgent task in a fashion e-commerce recommender system. It will significantly enhance user experience and satisfaction. However, due to the challenges of inferring the rich yet complicated set of compatibility patterns in a large e-commerce corpus of fashion items, this task is still underexplored. Inspired by the recent advances in multirelational knowledge representation learning and deep neural networks, this paper proposes a novel Translation-based Neural Fashion Compatibility Modeling (TransNFCM) framework, which jointly optimizes fashion item embeddings and category-specific complementary relations in a unified space via an end-to-end learning manner. TransNFCM places items in a unified embedding space where a category-specific relation (category-comp-category) is modeled as a vector translation operating on the embeddings of compatible items from the corresponding categories. By this way, we not only capture the specific notion of compatibility conditioned on a specific pair of complementary categories, but also preserve the global notion of compatibility. We also design a deep fashion item encoder which exploits the complementary characteristic of visual and textual features to represent the fashion products. To the best of our knowledge, this is the first work that uses category-specific complementary relations to model the category-aware compatibility between items in a translation-based embedding space. Extensive experiments demonstrate the effectiveness of TransNFCM over the state-of-the-arts on two real-world datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3