A Grammar-Based Structural CNN Decoder for Code Generation

Author:

Sun Zeyu,Zhu Qihao,Mou Lili,Xiong Yingfei,Li Ge,Zhang Lu

Abstract

Code generation maps a program description to executable source code in a programming language. Existing approaches mainly rely on a recurrent neural network (RNN) as the decoder. However, we find that a program contains significantly more tokens than a natural language sentence, and thus it may be inappropriate for RNN to capture such a long sequence. In this paper, we propose a grammar-based structural convolutional neural network (CNN) for code generation. Our model generates a program by predicting the grammar rules of the programming language; we design several CNN modules, including the tree-based convolution and pre-order convolution, whose information is further aggregated by dedicated attentive pooling layers. Experimental results on the HearthStone benchmark dataset show that our CNN code generator significantly outperforms the previous state-of-the-art method by 5 percentage points; additional experiments on several semantic parsing tasks demonstrate the robustness of our model. We also conduct in-depth ablation test to better understand each component of our model.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oracle-Guided Program Selection from Large Language Models;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit;ACM Computing Surveys;2024-05-18

3. A multi-encoder model for automatic code comment generation;Fourth International Conference on Sensors and Information Technology (ICSI 2024);2024-05-06

4. GrammarT5: Grammar-Integrated Pretrained Encoder-Decoder Neural Model for Code;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

5. Transformers based Python Code Generation from Natural Language;2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3